Mapping spin coherence of a single rare-earth ion in a crystal onto a single photon polarization state.
نویسندگان
چکیده
We report on optical detection of a single photostable Ce(3+) ion in an yttrium aluminium garnet (YAG) crystal and on its magneto-optical properties at room temperature. The spin quantum state of the emitting level of a single cerium ion in YAG can be initialized by a circularly polarized laser pulse. Coherent precession of the electron spin is read out by observing temporal behavior of circularly polarized fluorescence of the ion. This implies direct mapping of the spin quantum state of Ce(3+) ion onto the polarization state of the emitted photon and represents the quantum interface between a single spin and a single photon.
منابع مشابه
Heralded atomic-ensemble quantum memory for photon polarization states
We describe the mapping of quantum states between single photons and an atomic ensemble. In particular, we demonstrate a heralded quantum memory based on mapping of a photon polarization state onto a single collective-spin excitation (magnon) shared between two atomic ensembles. The polarization fidelity above 90(2)% for any input polarization far exceeds the classical limit of 23 . The process...
متن کاملHeralded single-magnon quantum memory for photon polarization States.
We demonstrate a heralded quantum memory where a photon announces the mapping of a light polarization state onto a single collective-spin excitation (magnon) shared between two atomic ensembles. The magnon can be converted at a later time into a single polarized photon with polarization fidelity over 90(2)% for all fiducial input states, well above the classical limit of 2/3. The process can be...
متن کاملNondestructive photon detection using a single rare-earth ion coupled to a photonic cavity
We study the possibility of using single rare-earth ions coupled to a photonic cavity with high cooperativity for performing nondestructive measurements of photons, which would be useful for global quantum networks and photonic quantum computing. We calculate the achievable fidelity as a function of the parameters of the rare-earth ion and photonic cavity, which include the ion’s optical and sp...
متن کاملDynamical evolution of nonclassical properties in cavity quantum electrodynamics with a single trapped ion
In this paper, by considering a system consisting of a single two-level trapped ion interacting with a single-mode quantized radiation field inside a lossless cavity, the temporal evolution of the ionic and the cavity-field quantum statistical properties including photon-counting statistics, quantum fluctuations of the field quadratures and quantum fluctuations of the ionic dipole variables are...
متن کاملInterfacing superconducting qubits and telecom photons via a rare-earth-doped crystal.
We propose a scheme to couple short single photon pulses to superconducting qubits. An optical photon is first absorbed into an inhomogeneously broadened rare-earth doped crystal using controlled reversible inhomogeneous broadening. The optical excitation is then mapped into a spin state using a series of π pulses and subsequently transferred to a superconducting qubit via a microwave cavity. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 111 12 شماره
صفحات -
تاریخ انتشار 2013